
Asp.Net Core has a set of action results which are intended to facilitate the
creation and formatting of response data. Without a well formed correct
response, our application cannot work correctly and efficiently. Therefore
action results and as a whole mechanisms that are responsible for generating
the response are an important part of an Asp.Net Core application. Knowing
and using them correctly not only contribute to a more readable controller
that states its intention clearly, but also it can reduce a lot of codes that are
superfluous and are not needed to be written.

In this post I’m going to explain how Asp.Net Core action results works and
what kind of response they return to the client. Also I’m going to discuss
when and why to use them and how you can create you own custom action
results. Also I’m going to introduce some ideas and opinions about correct
usage and best practices that might be of benefit.

Table Of Contents

Different categories of action result

Quick note on returning action results

Miscellaneous action results

Security related action results

Redirect related action results

Web API related action results

File related action results

Action results form previous version of Asp.Net MVC that are either reamed
or deleted

https://hamidmosalla.com/2017/03/29/asp-net-core-action-results-explained/
https://hamidmosalla.com/2017/03/29/asp-net-core-action-results-explained/
https://hamidmosalla.com/2017/03/29/asp-net-core-action-results-explained/
https://hamidmosalla.com/2017/03/29/asp-net-core-action-results-explained/
https://hamidmosalla.com/2017/03/29/asp-net-core-action-results-explained/
https://hamidmosalla.com/2017/03/29/asp-net-core-action-results-explained/
https://hamidmosalla.com/2017/03/29/asp-net-core-action-results-explained/
https://hamidmosalla.com/2017/03/29/asp-net-core-action-results-explained/
https://hamidmosalla.com/2017/03/29/asp-net-core-action-results-explained/
https://hamidmosalla.com/2017/03/29/asp-net-core-action-results-explained/

Building and returning a custom result

Best practices regarding the use of action results

Summary

Different categories of action result

I categorize the action results to five sections, these sections are mostly based
on usage:

Miscellaneous: These are action results that are stand on their own or are too
general

Security: These are action results that are relat

Redirect: These are action results that are related to different kinds of
redirection

Web API: These are action results that are most likely used in API
controllers, but some of them can be used everywhere

Files: These are action results tha

Here is a diagram describing the actions results’ inheritance hierarchy:

Asp.Net Core Action Results Inheritance Hierarchy

Building and returning a custom result

Best practices regarding the use of action results

categories of action result

I categorize the action results to five sections, these sections are mostly based

These are action results that are stand on their own or are too

These are action results that are related to security

These are action results that are related to different kinds of

These are action results that are most likely used in API
controllers, but some of them can be used everywhere

These are action results that are related to files

Here is a diagram describing the actions results’ inheritance hierarchy:

Asp.Net Core Action Results Inheritance Hierarchy

I categorize the action results to five sections, these sections are mostly based

These are action results that are stand on their own or are too

These are action results that are related to different kinds of

These are action results that are most likely used in API

Here is a diagram describing the actions results’ inheritance hierarchy:

Asp.Net Core Action Results Inheritance Hierarchy

https://hamidmosalla.com/2017/03/29/asp-net-core-action-results-explained/
https://hamidmosalla.com/2017/03/29/asp-net-core-action-results-explained/
https://hamidmosalla.com/2017/03/29/asp-net-core-action-results-explained/
https://hamidmosalla.com/wp-content/uploads/2017/03/ActionResultHierarchy1.png

I could go with explaining the action results in accordance with this picture,
but I thought categorizing it based on usability helps with remembering and
explanation. Also because some of their characteristics can be the same.

Quick note on returning action results

When we want to render a view, we simply use return View("ViewName",
Model). But what the framework actually does for us behind the scene is that
it news up an instance of ViewResult, fill its property with the values we
provided, or the values that should be set on the controller level. It makes our
job simpler by doing some plumbing work for us, lets see what the
framework does for us behind the scene:

public virtual ViewResult View(string viewName, object model)

{

 if (model != null)

 this.ViewData.Model = model;

 ViewResult viewResult = new ViewResult();

 viewResult.ViewName = viewName;

 ViewDataDictionary viewData = this.ViewData;

 viewResult.ViewData = viewData;

 ITempDataDictionary tempData = this.TempData;

 viewResult.TempData = tempData;

 return viewResult;

}

view rawViewResultViewImplementation.cs hosted with by GitHub

As you can see if the framework didn’t do this, we needed to do a lot of
plumbing work and our controller would have become harder to read. By the
way what the framework does here is actually called Command Pattern.

https://gist.github.com/HamidMosalla/e957a1a02a031e8640a67719db70048f/raw/84c96781890a10e6e6ebe8315907d6870638067d/ViewResultViewImplementation.cs
https://gist.github.com/HamidMosalla/e957a1a02a031e8640a67719db70048f
https://github.com/

So this basically means whenever we return Json(data), we could also
return new JsonResult(data), and it’s true for all types of return result,
some of them have less setup work to do, some of them have more. other
thing to note is that some of these convenience methods are in abstract
class Controller which we inherit from, and some of them are
in ControllerBase. I think it’s very useful to know what the framework
does for you under the hood, because in some circumstances it can make
things more flexible or simpler.

Miscellaneous action results

public class Person

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

}

public class HomeController : Controller

{

 public IActionResult IndexWithId(int id)

 {

 return View();

 }

 public ActionResult IndexActionResult()

 {

 return View("Index");

 }

 public ViewResult IndexViewResult()

 {

 return View();

 }

 public JsonResult JsonActionResult()

 {

 var data = new { Name = "Alex", LastName = "DeLarge" };

 return Json(data);

 }

 public PartialViewResult PartialViewActionResult()

 {

 var model = new List<int> { 2, 3 };

 return PartialView("_PartialViewActionResult", model);

 }

 //writes the result of component to response, notice that you can directly call it in a controller

 //IViewComponentResult should be returned from a Class that inherent form ViewComponent

 public ViewComponentResult HomeSliderComponent()

 {

 return ViewComponent("HomeSlider", new { id = 4 });

 }

 //returns 200 with the content and specified media type for the content

 public ContentResult ContentActionResult()

 {

 return Content("{Name: 'Hamid'}, {Name: 'Stanley'}", new MediaTypeHeaderValue("application/json"));

 }

 //returns 200 OK which is empty

 public EmptyResult EmptyActionResult()

 {

 return new EmptyResult();

 }

 public Person PocoResult()

 {

 return new Person { FirstName = "Major", LastName = "Bob" };

 }

 public List<Person> GetAllPersons()

 {

 return new List<Person> { new Person { FirstName = "Alex", LastName = "DeLarge" }, new Person { FirstName

 }

 public int IntResult()

 {

 return 2;

 }

 public string StringResult()

 {

 return "Major Bob ?";

 }

 [NonAction]

 public Person YouShallNotPass()

 {

 return new Person { FirstName = "James", LastName = "Gandolfini" };

 }

}

view rawMiscellaneousActionResults.cs hosted with by GitHub

IActionResult and ActionResult

IActionResult and ActionResult work as a container for other action results,
in that IActionResult is an interface and ActionResult is an abstract
class that other action results inherit from. So they can’t be newed up and
returned like other action results. IActionResult and ActionResult have not
much of a different from usability perspective, but since IActionResult is the
intended contract for action results, it’s better to use it as opposed to
ActionResult. IActionResult/ActionResult should be used to give us more
flexibility, like when we need to return different type of response based on
user interaction.

For example if something not found we return NotFoundResult, but if it
was found we return it as part of a ViewResult. We can also use it to
implement graceful degradation, for example if JavaScript was enabled we
return a JsonResult but if it wasn’t we return ViewResult. We find this
out by setting a flag of some kind to true form JavaScript if it was enabled,
like I’ve explained in this post.

ViewResult

ViewResult is intended to render a view to response, we use it when we want
to render a simple .cshtml view for example.

JsonResult

JsonResult is intended to return JSON-formatted data, it returns JSON
regardless of what format is requested through Accept header. There is no
content negotiation happen when we use JsonResult. Content negotiation is

https://gist.github.com/HamidMosalla/89f602d37a0083e6b730e63771e02c94/raw/2e41731a004dde4db3a5621393172c9e1bdebc74/MiscellaneousActionResults.cs
https://gist.github.com/HamidMosalla/89f602d37a0083e6b730e63771e02c94
https://github.com/
https://hamidmosalla.com/2016/08/29/how-to-use-iactionresult-abstraction-to-achieve-graceful-degradation/

the process of figuring out what type of data browser requested through its
Http request Accept header. For example this is an accept header that request
content of type HTML: Accept: application/xml, */*; q=0.01, with action
results of type JsonResult no content negotiation takes place. Which means
server ignores the user requested type and return JSON, I explain content
negotiation in more detail in subsequent section.

PartialViewResult

PartialView are essential when it comes to loading a part of page through
AJAX, they return raw rendered HTML. Here I try to explain a scenario that
I might want to use PartialViews:

I have a page that submit a Product, I have a main page for it. Now I want to
add different brand of the same product with some info about it, I have a
button to add more brand of products. I can either submit the product and add
brand to it using a normal view, or I can add a button and a modal containing
the fields needed for submitting new brands.

But how should I do it? place the needed HTML on the main page? What if
there was a different model for the data involved with it? Or some kind of
calculation was involved? Wther way is to do all the calculation from
JavaScript side but that would be too verbose. Best way is to use an action
result of type PartialViewResult, do the stuff I need to do there, return the
HTML and attach the HTML to the main page through JavaScript.

ViewComponentResult

Usually we use view component by calling Component.InvokeAsync in the
view, but can we use the returned HTML form a view component directly?
Maybe we want to reuse our business logic or refresh our the HTML part of
the page that are loaded with view component, can we do that? YES! we can
do that with ViewComponentResult, as you can see with the code excerpt
above, the HomeSliderComponent is a view component action that we can
directly call and get HTML, and do something like what has asked in this
question.

https://stackoverflow.com/questions/32618759/viewcomponent-alternative-for-ajax-refresh
https://stackoverflow.com/questions/32618759/viewcomponent-alternative-for-ajax-refresh

ContentResult

The default return type of a
string. We can return any type of response by specifying a MIME type, in the
code excerpt above I’ve returned a content of type application/json.

EmptyResult

I use EmptyResult when I have some kind of command, like delete, update,
create and I don’t want to return anything. According to
principle commands shouldn’t return anything.
command and return 200 status code. There is one other kind of action result
that return null but it doesn’t return 200 HTTP status code, but 204. It’s
called NoContentResult, but we might want to use that when we have a
web api. I explain that in detail in subsequent section.

Result of type POCO!

If we want to return a POCO class for an action, we can. As you can see in
the code above the PocoResult
when accessed, we get a nicely formatted

That’s because the framework automatically creates an
wrapper for you, and the default format of serialization in MVC is JSON.
You can also have an action of type generic list of Person, like with the

The default return type of a ContentResult is string, but it’s not limited to
string. We can return any type of response by specifying a MIME type, in the
code excerpt above I’ve returned a content of type application/json.

se EmptyResult when I have some kind of command, like delete, update,
create and I don’t want to return anything. According to CQS

commands shouldn’t return anything. EmptyResult execute our
command and return 200 status code. There is one other kind of action result
that return null but it doesn’t return 200 HTTP status code, but 204. It’s

, but we might want to use that when we have a
plain that in detail in subsequent section.

If we want to return a POCO class for an action, we can. As you can see in
PocoResult action returns an object of type Person and

when accessed, we get a nicely formatted JSON.

That’s because the framework automatically creates an ObjectResult
wrapper for you, and the default format of serialization in MVC is JSON.
You can also have an action of type generic list of Person, like with the

is string, but it’s not limited to
string. We can return any type of response by specifying a MIME type, in the
code excerpt above I’ve returned a content of type application/json.

se EmptyResult when I have some kind of command, like delete, update,

execute our
command and return 200 status code. There is one other kind of action result
that return null but it doesn’t return 200 HTTP status code, but 204. It’s

, but we might want to use that when we have a

If we want to return a POCO class for an action, we can. As you can see in
action returns an object of type Person and

ObjectResult

wrapper for you, and the default format of serialization in MVC is JSON.
You can also have an action of type generic list of Person, like with the

https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://en.wikipedia.org/wiki/Command%E2%80%93query_separation
https://hamidmosalla.com/wp-content/uploads/2017/03/POCO1.png

GetAllPersons action and the frame

Primitive Types Result

You can also return string or int or any other kind of primitive types and the
framework tries its best to convert it to a response that is pertinent to the
current type. Here what happens

In this case we get a response with content type of
not true for other types, for example here is what you get when you return int
in action IntResult:

Here we see that result is converte

NonAction Attribute

GetAllPersons action and the framework takes care of serialization for you.

You can also return string or int or any other kind of primitive types and the
framework tries its best to convert it to a response that is pertinent to the
current type. Here what happens when you return a string in StringResult

In this case we get a response with content type of text/plain, but that’s
not true for other types, for example here is what you get when you return int

Here we see that result is converted to JSON, hmm.

work takes care of serialization for you.

You can also return string or int or any other kind of primitive types and the
framework tries its best to convert it to a response that is pertinent to the

StringResult:

, but that’s
not true for other types, for example here is what you get when you return int

https://hamidmosalla.com/wp-content/uploads/2017/03/GetAllPersons1.png
https://hamidmosalla.com/wp-content/uploads/2017/03/String1.png
https://hamidmosalla.com/wp-content/uploads/2017/03/Int.png

If you want an action to not be accessed from outside, and be public too, you
can use [NonAction] attribute. By decorating an action by [NonAction],
you’ll get a 404.

Security related action results

//sign in the user with its claim through returning SignInResult

public SignInResult SignInActionResult()

{

 const string Issuer = "https://gov.uk";

 var claims = new List<Claim>

 {

 new Claim(ClaimTypes.Name, "Andrew", ClaimValueTypes.String, Issuer),

 new Claim(ClaimTypes.Surname, "Lock", ClaimValueTypes.String, Issuer),

 new Claim(ClaimTypes.Country, "UK", ClaimValueTypes.String, Issuer),

 new Claim("ChildhoodHero", "Ronnie James Dio", ClaimValueTypes.String)

 };

 var userIdentity = new ClaimsIdentity(claims, "Passport");

 var userPrincipal = new ClaimsPrincipal(userIdentity);

 var authenticationProperties = new AuthenticationProperties

 {

 ExpiresUtc = DateTime.UtcNow.AddMinutes(20),

 IsPersistent = false,

 AllowRefresh = false,

 RedirectUri = "/Home/Index"

 };

 return SignIn(userPrincipal, authenticationProperties, "Cookie");

}

//sign in the user with its claim through authentication manager

public async Task SignInResultAsync()

{

 const string Issuer = "https://gov.uk";

 var claims = new List<Claim>

 {

 new Claim(ClaimTypes.Name, "Andrew", ClaimValueTypes.String, Issuer),

 new Claim(ClaimTypes.Surname, "Lock", ClaimValueTypes.String, Issuer),

 new Claim(ClaimTypes.Country, "UK", ClaimValueTypes.String, Issuer),

 new Claim("ChildhoodHero", "Ronnie James Dio", ClaimValueTypes.String)

 };

 var userIdentity = new ClaimsIdentity(claims, "Passport");

 var userPrincipal = new ClaimsPrincipal(userIdentity);

 var authenticationProperties = new AuthenticationProperties

 {

 ExpiresUtc = DateTime.UtcNow.AddMinutes(20),

 IsPersistent = false,

 AllowRefresh = false,

 RedirectUri = "/Home/Index"

 };

 await HttpContext.Authentication.SignInAsync("Cookie", userPrincipal, authenticationProperties);

}

//sign out the user with its claim through returning SignOutResult

public SignOutResult SignOutActionResult()

{

 var authenticationProperties = new AuthenticationProperties

 {

 ExpiresUtc = DateTime.UtcNow.AddMinutes(20),

 IsPersistent = false,

 AllowRefresh = false,

 RedirectUri = "/Index"

 };

 return SignOut(authenticationProperties, "Cookie");

}

//sign out the user with its claim through returning authentication manager

public async Task SignOutResultAsync()

{

 var authenticationProperties = new AuthenticationProperties

 {

 ExpiresUtc = DateTime.UtcNow.AddMinutes(20),

 IsPersistent = false,

 AllowRefresh = false,

 RedirectUri = "/Index"

 };

 await HttpContext.Authentication.SignOutAsync("Cookie", authenticationProperties);

}

//returns 403 Forbidden status code and redirect the user to the path specified when we setup AccessDeniedPath in cookie auth

//but do it through the AuthenticationManager Class

//https://httpstatuses.com/403

public async Task ForbidAsyncResult()

{

 //var props = new AuthenticationProperties

 //{

 // RedirectUri = "/Home/About"

 //};

 await HttpContext.Authentication.ForbidAsync();

}

//returns 403 Forbidden status code and redirect the user to the path specified when we setup AccessDeniedPath in cookie auth

public ForbidResult ForbidActionResult()

{

 var props = new AuthenticationProperties

 {

 RedirectUri = "/Home/About"

 };

 var something = new ForbidResult();

 //return Forbid();

 return Forbid(props);

}

//returns the 401 Unauthorized response and redirect the user to the path specified when we setup AccessDeniedPath in cookie

//but do it through the AuthenticationManager Class

//https://httpstatuses.com/401

public async Task ChallengeAsyncResult()

{

 //var props = new AuthenticationProperties

 //{

 // RedirectUri = "/Home/About"

 //};

 await HttpContext.Authentication.ChallengeAsync();

}

//returns the 401 Unauthorized response and redirect the user to the path specified when we setup AccessDeniedPath in cookie

public ChallengeResult ChallengeActionResult()

{

 var props = new AuthenticationProperties

 {

 RedirectUri = "/Home/About"

 };

 return Challenge(props);

}

//returns a response with 401 response code

public UnauthorizedResult UnauthorizedActionResult()

{

 return Unauthorized();

}

view rawSecurityActionResults.cs hosted with by GitHub

SignInResult

SignInResult will sign in the user based on provided mechanism. As you can
see in the code above, the SignInActionResult creates a ClaimsPrincipal
along with an identity called passport and the claims needed for that identity.
Then it passes the claim principal to the SignIn method of the controller.
Currently we use cookie to sign the user in.

Also note that returning SignInResult is the same as
calling HttpContext.Authentication.SignInAsync,
on AuthenticationManager class as you can see happened in the method
SignInResultAsync. SignInResult internally calls the SignInAsync for you
in its ExecuteResultAsync method. The effect of returning a SignInResult
or calling the SignInAsync is the same but the SignInResult is more readable
in the context of a controller in my opinion. I use SignInAsync outside
controllers if I wanted to sign the user in. By the way if you want to know
more about the authentication process in asp.net core Andrew Lock has a
fantastic introductory article on it.

SignOutResult

This one is the same as SignInResult with the difference that it sign the user
out. As you can see in the SignOutActionResult method, SignOut method
takes an authentication scheme which determine from what kind of
authentication the user should get signed out. You can also call
the HttpContext.Authentication.SignOutAsync if you like as I did in
the SignOutResultAsync method.

https://gist.github.com/HamidMosalla/4a08b2d334e9c7c90e1012d07a91bb37/raw/a90bd754f1443677a3d9646c0a8c8348f1c561f4/SecurityActionResults.cs
https://gist.github.com/HamidMosalla/4a08b2d334e9c7c90e1012d07a91bb37
https://github.com/
https://andrewlock.net/introduction-to-authentication-with-asp-net-core/

ForbidResult

We use ForbidResult when we want to refuse request to a particular resource.
it returns 403 status code to response and redirect us to the path specified in
cookie authentication setup through the AccessDeniedPath property. From
what I understood from its HTTP specification, it should be used to allow
access if the user had the correct authorization credentials, and completely
refuse it if user hadn’t.

By this I mean we don’t redirect the user to a login page. We might even
show a 404 page for more security and don’t let the unauthorized user even
know that such a resource exist and needs the correct credentials. It’s like
saying what are you doing here with this credential dude? You shouldn’t
event be here! ForbidResult
calls HttpContext.Authentication.ForbidAsync internally, so we can
basically call the FordbidAsync method of AuthenticationManager
directly like in ForbidAsyncResult method as you can see in the code
excerpt above.

ChallengeResult

We use ChallengeResult when we need to tell the user that his authentication
credential wasn’t valid or not even present. Then redirect the user to a login
page which is our way of challenging the user so to speak. With doing so we
get 401 Unauthorized status code in our response and get redirected to
the path specified in cookie authentication setup through
the AccessDeniedPath property. Like other security related results you can
also call HttpContext.Authentication.ChallengeAsync as
in ChallengeAsyncResult directly.

UnauthorizedResult

UnauthorizedResult returns 401 status code, its difference with
ChallengeResult is that it just returns an status code and doesn’t do anything
else. In contrast with its counterpart that has many options for redirecting the
user and options related to asp.net core identity.

https://httpstatuses.com/403
https://httpstatuses.com/401
https://httpstatuses.com/401

Redirect related action results

//redirect to specified string URL with permanent 301 property set to false

public RedirectResult RedirectActionResult()

{

 //return Redirect("/");

 return Redirect("http://localhost:12060/Home/Index");

}

//redirect to specified string URL with permanent 301 property set to true

public RedirectResult RedirectPermanentActionResult()

{

 return RedirectPermanent("/");

 return RedirectPermanent("http://localhost:12060/Home/Index");

}

//redirect to specified action with permanent 301 property set to false

public RedirectToActionResult RedirectToActionActionResult()

{

 return RedirectToAction("Index");

}

//redirect to specified action with permanent 301 property set to true

public RedirectToActionResult RedirectToActionPermanentActionResult()

{

 return RedirectToActionPermanent("Index");

}

//redirect to specified route by taking a route dictionary either as a type or as an anonymous type with permanent 301 prope

public RedirectToRouteResult RedirectToRouteActionResult()

{

 var routeValue = new RouteValueDictionary(new { action = "Index", controller = "Home", area = "" });

 var routeValue2 = new { action = "Index", controller = "Home", area = "" };

 return RedirectToRoute(routeValue);

}

//redirect to specified route by taking a route dictionary either as a type or as an anonymous type with permanent 301 proper

public RedirectToRouteResult RedirectToRoutePermanentActionResult()

{

 var routeValue = new RouteValueDictionary(new { action = "Index", controller = "Home", area = "" });

 var routeValue2 = new { action = "Index", controller = "Home", area = "" };

 return RedirectToRoutePermanent(routeValue2);

}

//redirect to specified URL is it's local URL (also relative), if not it will throws an exception, permanent 301 property set

public LocalRedirectResult LocalRedirectActionResult()

{

 var IsHomeIndexLocal = Url.IsLocalUrl("/Home/Index");

 var isRootLocal = Url.IsLocalUrl("/");

 //throws InvalidOperationException: The supplied URL is not local. Url must be relative

 var isAbsoluteUrlLocal = Url.IsLocalUrl("http://localhost:12059/Home/Index");

 return LocalRedirect("/Home/Index");

}

//redirect to specified URL is it's local URL (also relative), if not it will throws an exception, permanent 301 property set

public LocalRedirectResult LocalRedirectPermanentActionResult()

{

 var IsHomeIndexLocal = Url.IsLocalUrl("/Home/Index");

 var isRootLocal = Url.IsLocalUrl("/");

 //throws InvalidOperationException: The supplied URL is not local. Url must be relative

 var isAbsoluteUrlLocal = Url.IsLocalUrl("http://localhost:12059/Home/Index");

 return LocalRedirectPermanent("/Home/Index");

}

view rawRedirectActionResults.cs hosted with by GitHub

There are four types of action results that are related to redirect. With each
one you can either return normal redirect, or permanent. The the return
method related to permanent ones are suffixed with Permanent keyword. You
can also return these results with their Permanent property set to true. These
action results are:

 RedirectResult
 RedirectToActionResult
 RedirectToRouteResult
 LocalRedirectResult

In subsequent section I’m going to explain each one of them and when to use
them.

RedirectResult

https://gist.github.com/HamidMosalla/c0d5907b1bd58dfacd96aa2e34a59992/raw/d135038303a42d034763433c15e3a34be0c526fe/RedirectActionResults.cs
https://gist.github.com/HamidMosalla/c0d5907b1bd58dfacd96aa2e34a59992
https://github.com/

RedirectResult will redirect us to the provided URL, it doesn’t matter if the
URL is relative or absolute, it just redirect, very simple. Other thing to note is
that it can redirect us temporarily which we’ll get 302 status code or redirect
us permanently which we’ll get 301 status code. If we call the Redirect
method, it redirect us temporarily.

if we call the RedirectPermanent method, it redirect us permanently. Also as I
explained in previous section we don’t need to use these methods to redirect
permanently or temporarily, we can just new up an instance
of RedirectResult with its Permanent property set to true or false and
return that instead, like this:

return new RedirectResult("/") {Permanent = true};

RedirectToActionResult

RedirectToActionResult can redirect us to an action. It takes in action name,
controller name, and route value, like the previous one. It can redirect us
temporarily(RedirectToAction method) or
permanently(RedirectToActionPermanent method). By using it and not
using a pure string to specify URL, we have the advantage of inspecting the
addresses easily as opposed to parsing string.

RedirectToRouteResult

RedirectToRouteResult should be used when we want to redirect to a route, it
takes a route name, route value and redirect us to that route with the route
values provided. It can also redirect us permanently or temporarily by setting
the Permanent property to true or false or by using the controller base

https://hamidmosalla.com/wp-content/uploads/2017/03/RedirectResultNonPermanent.png

methods RedirectToRoute/RedirectToRoutePermanent. Like previous
method it is also a better option than RedirectResult because we don’t have to
parse route values which are string or assume anything if we wanted to unit
test the action for example.

LocalRedirectResult

We should use LocalRedirectResult if we want to make sure that the redirects
that happens in some context are local to our site. By doing that we make
ourselves immune to open redirect attacks. This action result type takes a
string for URL needed for redirect, and a bool flag to tell it if it’s permanent.
Under the hood it checks the URL with Url.IsLocalUrl("URL") method to
see if it’s local. If it was it redirect us to the address, but if it wasn’t it’ll
throws an InvalidOperationException. One other caveat is that if you
pass a local URL with an absolute address like
this, http://localhost:12059/Home/Index, you’ll get an exception. That’s
because the IsLocalUrl method consider URL like this to not be local, so you
must always pass a relative URL in.

Web API related action results

In this section I’m going to explain services that might be used in an API
contoller, I know some of them might be used everywhere, I just did it to
categorize them.

//returns and empty 400 response

public BadRequestResult BadRequestActionResult()

{

 return BadRequest();

}

//returns 400 with an object containing error detail as object or as Model State Dictionary

public BadRequestObjectResult BadRequestObjectActionResult()

{

 var modelState = new ModelStateDictionary();

 modelState.AddModelError("Name", "Name is required.");

 return BadRequest(modelState);

}

//returns and empty 404 response

public NotFoundResult NotFoundActionResult()

{

 return NotFound();

}

//returns 404 with an object containing pertinent info

public NotFoundObjectResult NotFoundObjectActionResult()

{

 return NotFound(new { Id = 2, error = "There was no customer with an id of 2." });

}

//a response with an object but a null status code

public ObjectResult ObjectActionResult()

{

 return new ObjectResult(new { Name = "TomDickHarry" });

}

//200 with an object if formatting succed

public OkObjectResult OkObjectActionResult()

{

 return new OkObjectResult(new { Name = "TomDickHarry" });

}

//200 with an object if formatting succed

public OkObjectResult OkWithObjectActionResult()

{

 return Ok(new { Name = "TomDickHarry" });

}

// empty 200 without object and formatting

public OkResult OkEmptyWithoutObject()

{

 return Ok();

}

//returns 204 no content status code response

//https://httpstatuses.com/204

public NoContentResult NoContentActionResult()

{

 return NoContent();

}

//returns a response with specified status code

public StatusCodeResult StatusCodeActionResult()

{

 return StatusCode(404);

}

//returns a response with specified status code along with an object

public ObjectResult StatusCodeWithObject()

{

 return StatusCode(404, new { Name = "TomDickHarry" });

}

//return 201 created status code along with the path of the created resource and the actual object

public CreatedResult CreatedActionResult()

{

 return Created(new Uri("/Home/Index", UriKind.Relative), new { Name = "Hamid" });

}

//return 201 created status code along with the controller, action, route values and the actual object that is created

public CreatedAtActionResult CreatedAtActionActionResult()

{

 return CreatedAtAction("IndexWithId", "Home", new { id = 2, area = "" }, new { Name = "Hamid" });

}

//return 201 created status code along with the route name, route value, and the actual object that is created

public CreatedAtRouteResult CreatedAtRouteActionResult()

{

 return CreatedAtRoute("default", new { Id = 2, area = "" }, new { Name = "Hamid" });

}

//return 202 accepted which means info in accepted for processing, and you can return a Uri for more info about processing

public AcceptedResult AcceptedActionResult()

{

 return Accepted(new Uri("/Home/Index", UriKind.Relative), new { Name = "Hamid" });

}

//return 202 accepted which means info in accepted for processing, and you can return controller and action name along with route values

//for more info about processing and an object containing pertinent data

public AcceptedAtActionResult AcceptedAtActionActionResult()

{

 return AcceptedAtAction("IndexWithId", "Home", new { Id = 2, area = "" }, new { Name = "Hamid" });

}

//return 202 accepted which means info in accepted for processing, and you can return route name along with route values

//for more info about processing and an object containing pertinent data

public AcceptedAtRouteResult AcceptedAtRouteActionResult()

{

 return AcceptedAtRoute("default", new { Id = 2, area = "" }, new { Name = "Hamid" });

}

//returns UnsupportedMediaType (415) response

public UnsupportedMediaTypeResult UnsupportedMediaTypeActionResult()

{

 return new UnsupportedMediaTypeResult();

}

view rawWebServiceActionResults.cs hosted with by GitHub

BadRequestResult

We use this action result to indicate a bad request, it doesn’t take any
argument, it just return a 400 status code.

BadRequestObjectResult

It is the same as BadRequestResult, with the difference that it can pass an
object or a ModelStateDictionary containing the details regarding the
error, as you see in the picture below:

NotFoundResult

This one is simple, it returns a 404 status code to response.

NotFoundObjectResult

https://gist.github.com/HamidMosalla/90a26b7c4978d85128a35d8cd2e9e771/raw/9cee3e9c3751efb4aa237460df3b485213841d3e/WebServiceActionResults.cs
https://gist.github.com/HamidMosalla/90a26b7c4978d85128a35d8cd2e9e771
https://github.com/
https://httpstatuses.com/400
https://hamidmosalla.com/wp-content/uploads/2017/03/BadRequestObject.png
https://httpstatuses.com/404

The same as NotFoundResult, with the different that you can pass an object
with the 404 response.

ObjectResult

ObjectResult is the super type of: CreatedAtActionResult,
CreatedAtRouteResult, CreatedResult, BadRequestObjectResult,
NotFoundObjectResult, OkObjectResult, AcceptedResult,
AcceptedAtActionResult, AcceptedAtRouteResult. ObjectResult primary
role is content negotiation, if you dig deep, it has some variation of method
called SelectFormatter on its ObjectResultExecutor. You can return
an object with it, and it formats the response based on what user is requested
in the Accept header, if the header didn’t exist, it returns the default format
configured for the app. It’s important to note that if the request is issued
through a browser, the Accept header will be ignored, unless we set
the RespectBrowserAcceptHeader to true when we configure the MVC
options in Startup.cs. Also it doesn’t set the status code, which cause the
status code to be null.

OkObjectResult

OkObjectResult is like ObjectResult, it does the formatting and content
negotiation, the only difference is that it returns 200 status code, as opposed
to ObjectResult that returns null status code.

OkResult

OkResult return 200 status code, without any related object.

https://hamidmosalla.com/wp-content/uploads/2017/03/NullStatusCodeOfObjectResult.png
https://httpstatuses.com/200

NoContentResult

The action result returns 204 status code. It’s different from EmptyResult in
that EmptyResult returns an empty 200 status code, but NoContentResult
returns 204. Use EmptyResult in normal controllers and NoContentResult in
API controllers.

StatusCodeResult

StatusCodeResult accept an status code number and set that status code for
the current request. One thing to point is that you can return
an ObjectResult with and status code and object. There is a method on
ControllerBase called StatusCode(404, new { Name =
"TomDickHarry" }), which can take a status code and an object and return
an ObjectResult.

CreatedResult

CreatedResult returns 201 status code along with a URI to the created
resource. You should use it when you creating a resource, and after creation
you can pass the URI of the created resource and that in turn set the Location
header field of the response.

CreatedAtActionResult

Almost the same as CreatedResult, it returns a 201 status code. With the
difference that it takes a controller, action, route value, and the object that is
created, as opposed to CreatedResult that only takes a URI and an object.

CreatedAtRouteResult

Almost the same as CreatedResult, with the difference that it takes a route
name and route value, instead of URI.

AcceptedResult

https://httpstatuses.com/204
https://httpstatuses.com/201
https://httpstatuses.com/201

AcceptedResult returns a 202 status code, indicating that the request is
successfully accepted for processing, but it might or might not acted upon.
Which in this case we should redirect the user to a location that provide some
kind of monitor on the current state of the process, for this purpose we pass a
URI.

AcceptedAtActionResult

Almost the same as AcceptedResult with the difference that it takes a
controller, action, route value, and an object instead of URI.

AcceptedAtRouteResult

Almost the same as AcceptedResult with the difference that it takes a route
name and route value instead of URI.

UnsupportedMediaTypeResult

This action result returns 415 status code, which means server cannot
continue to process the request with the given payload. It doing this by
inspecting the Content-Type or Content-Encoding of the current request or
inspecting the incoming data directly.

File related action results

//parent of the file related results, you can return any of the FileContentResult, FileStreamResult, VirtualFileResult, PhysicalFileResult to it

public FileResult FileActionResult()

{

 var file = System.IO.File.ReadAllBytes(@"C:\Users\User\Documents\Visual Studio 2017\Projects\VS2017Test

 return File(file, "text/plain", "HomeController.cs");

}

https://httpstatuses.com/202
https://httpstatuses.com/415

//returns the file content as an array of bytes

public FileContentResult FileContentActionResult()

{

 var file = System.IO.File.ReadAllBytes(@"C:\Users\User\Documents\Visual Studio 2017\Projects\VS2017Test

 return File(file, "text/plain", "HomeController.cs");

}

//return the file as a stream

public FileStreamResult FileStreamActionResult()

{

 //var file = System.IO.File.ReadAllBytes(@"C:\Users\User\Documents\Visual Studio 2017\Projects\VS2017Test

 //var stream = new MemoryStream(file, writable:true);

 var fileStream = new FileStream(@"C:\Users\User\Documents\Visual Studio 2017\Projects\VS2017Test\VS2017Test

 return File(fileStream, "text/plain", "HomeController.cs");

}

//returns a file specified with a virtual path

public VirtualFileResult VirtualFileActionResult()

{

 return File("/css/site.css", "text/plain", "site.css");

}

//returns the specified file on disk, that is it's physical address

public PhysicalFileResult PhysicalFileActionResult()

{

 return PhysicalFile(@"C:\Users\User\Documents\Visual Studio 2017\Projects\VS2017Test\VS2017Test\Controllers

}

view rawFileActionResults.cs hosted with by GitHub

FileResult

FileResult is the parent of all file related action results. These
are: FileContentResult, FileStreamResult, VirtualFileResult,
PhysicalFileResult. Since we can use it to return any kind of file, we can use
it when we need flexibility for example if we need to return files from
different places in the system based on the parameters we receive, kind of
like IActionResult. There is a method on ControllerBase class
called File. This method accept a set of parameters based on the type of file
and its location, which maps directly to the more specific return types
mentioned above, I’ll discuss how to use it in the following section.

https://gist.github.com/HamidMosalla/fe53c099ec71ad9e6a7b0e82f44502a8/raw/db9e0f78933003b425bb3fb843b92f16c64ef4e7/FileActionResults.cs
https://gist.github.com/HamidMosalla/fe53c099ec71ad9e6a7b0e82f44502a8
https://github.com/

FileContentResult

Use FileContentResult if you want to return the file as an array of bytes as
you see in FileContentActionResult.

FileStreamResult

We use FileStreamResult when we want to return the file as a FileStream
as you can see in FileStreamActionResult.

VirtualFileResult

You can use VirtualFileResult if you want to read a file form a virtual
address and return it, as shown in the VirtualFileActionResult .

PhysicalFileResult

You can use PhysicalFileResult to read a file from a physical address and
return it, as shown in PhysicalFileActionResult method.

Action results form previous version of Asp.Net MVC

that are either reamed or deleted

JavaScriptResult (doesn’t exist anymore, you can use ContentResult
instead)
FilePathResult (Use VirtualFileResult or PhysicalFileResult insead)
HttpNotFoundResult (Use NotFoundResult instead)
HttpStatusCodeResult (Use StatusCodeResult instead)
HttpUnauthorizedResult (Use UnauthorizedResult instead)

If you know of any other changed or deleted action results, please let me
know in the comments section.

Building and returning a custom result

using System.IO;

using System.Text;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

using System.Xml.Serialization;

using Microsoft.AspNetCore.Mvc.Internal;

namespace VS2017Test.Controllers

{

 public class XmlResult : ActionResult

 {

 /// <summary>Gets or sets the HTTP status code.</summary>

 public int? StatusCode { get; set; }

 /// <summary>Gets or sets the value to be formatted.</summary>

 public object Value { get; set; }

 /// <summary>

 /// Creates a new <see cref="T:Microsoft.AspNetCore.Mvc.JsonResult" /> with the given <paramref name

 /// </summary>

 /// <param name="value">The value to format as JSON.</param>

 public XmlResult(object value)

 {

 this.Value = value;

 }

 public XmlResult(object value, int? statusCode)

 {

 this.Value = value;

 this.StatusCode = statusCode;

 }

 private string Serialize<T>(T value)

 {

 if (value == null)

 {

 return string.Empty;

 }

 var type = value.GetType();

 XmlSerializer serializer = new XmlSerializer(type);

 using (StringWriter writer = new StringWriter())

 {

 serializer.Serialize(writer, value);

 return writer.ToString();

 }

 }

 /// <inheritdoc />

 public override Task ExecuteResultAsync(ActionContext context)

 {

 var response = context.HttpContext.Response;

 response.ContentType = "application/xml";

 response.StatusCode = StatusCode ?? 200;

 var xmlBytes = Encoding.ASCII.GetBytes(Serialize(Value));

 context.HttpContext.Response.Body.WriteAsync(xmlBytes, 0, xmlBytes.Length);

 return TaskCache.CompletedTask;

 }

 }

}

view rawXmlResult.cs hosted with by GitHub

If the current preexisting action results doesn’t meet your requirement, you
can create your own. First let me tell you that if you need an action result that
returns XML, you don’t need a custom action result. You can use input and
output formatter explained near the bottom of this page. The reason for
explaining this is to see how asp.net core produce response and the fact that
we can customize it however we want.

In order to build a custom action result, we need to inherit form IActionresult
or ActionResult. I have two constructor function, one only get the value to be
serialized and other one get the value and the status code. Next I override the
method ExecuteResultAsync and assigned the HttpResponse object to a
variable, then I set the ContentType and StatusCode value. Finally I’ve
serialized the value using Serialize private method, converted that serialized

https://gist.github.com/HamidMosalla/553cb5f35179456ba7e35465dfd6f907/raw/7ac1df0d20ca8005b6ae93fcea9340ca36c8898a/XmlResult.cs
https://gist.github.com/HamidMosalla/553cb5f35179456ba7e35465dfd6f907
https://github.com/
https://docs.microsoft.com/en-us/aspnet/core/mvc/models/formatting

value to an array of byte, and wrote that to response body
using context.HttpContext.Response.Body.WriteAsync
we get when we use it:

As I’ve said you don’t need to do this if you need to format a value to another
type, there are Input formatters that are used with model binding, and output
formatters that are responsible for formatting responses.

Best practices regarding the

I’m a proponent of being as specific as possible and not using IActionResult
and ActionResult unless you really need flexibility, here is my reasons for
doing so:

 programmers can mistakenly return an action result type that are not
pertinent and usable by the caller, take a look at this image:

value to an array of byte, and wrote that to response body
context.HttpContext.Response.Body.WriteAsync. Here is what

As I’ve said you don’t need to do this if you need to format a value to another
type, there are Input formatters that are used with model binding, and output
formatters that are responsible for formatting responses.

Best practices regarding the use of action results

I’m a proponent of being as specific as possible and not using IActionResult
and ActionResult unless you really need flexibility, here is my reasons for

programmers can mistakenly return an action result type that are not
ertinent and usable by the caller, take a look at this image:

. Here is what

As I’ve said you don’t need to do this if you need to format a value to another
type, there are Input formatters that are used with model binding, and output

use of action results

I’m a proponent of being as specific as possible and not using IActionResult
and ActionResult unless you really need flexibility, here is my reasons for

programmers can mistakenly return an action result type that are not
ertinent and usable by the caller, take a look at this image:

https://hamidmosalla.com/wp-content/uploads/2017/03/CustomXmlResult1.png
https://hamidmosalla.com/wp-content/uploads/2017/03/IActionResultJsonResult.png

As you can see, when we are specific we immediately get a build error, but
with IActionResult we don’t get anything. Let’s try to use the result with
IActionResult to see what happens:

As you can see we can’t use the NotFoundResult that is returned. What I
mean is that we cannot react to this kind of result, any code I put here isn’t
going to run. You might say who will do such a thing? But I see this a lot,
often an action result type are returned that are incompatible with the way
this action is going to be used.

 Another reason is that by returning an specific kind of action result our
controller becomes more clear. If we have 20 action in our controller,
and four of them are JsonResults for example, the return type singles
them out

 Another minor reason is when we unit test the controller’s action, we
don’t need to cast the results all the time, this is a small reason, but it’s
still a reason

I’m not saying we shouldn’t use IActionResult, I say we use it when we need
it, not because we don’t know what type of result we should return or using
IActionResult make our life simpler.

Summary

In this post I described all the action results available in Asp.Net Core and
categorized them based on usability. I also described what happens under the
hood when we return an action result and introduced some ideas about when
and how to use them. You can find the code files used in this post here.

https://hamidmosalla.com/wp-content/uploads/2017/03/JsonResuest.png
https://github.com/HamidMosalla/HamidMosallaBlog/tree/master/Posts/ActionResultsExplained

	Table Of Contents
	Different categories of action result
	Quick note on returning action results
	Miscellaneous action results
	IActionResult and ActionResult
	ViewResult
	JsonResult
	PartialViewResult
	ViewComponentResult
	ContentResult
	EmptyResult
	Result of type POCO!
	Primitive Types Result
	NonAction Attribute
	Security related action results
	SignInResult
	SignOutResult
	ForbidResult
	ChallengeResult
	UnauthorizedResult
	Redirect related action results
	RedirectResult
	RedirectToActionResult
	RedirectToRouteResult
	LocalRedirectResult
	Web API related action results
	BadRequestResult
	BadRequestObjectResult
	NotFoundResult
	NotFoundObjectResult
	ObjectResult
	OkObjectResult
	OkResult
	NoContentResult
	StatusCodeResult
	CreatedResult
	CreatedAtActionResult
	CreatedAtRouteResult
	AcceptedResult
	AcceptedAtActionResult
	AcceptedAtRouteResult
	UnsupportedMediaTypeResult
	File related action results
	view rawFileActionResults.cs hosted with ❤ by GitHub
	 FileResult
	FileContentResult
	FileStreamResult
	VirtualFileResult
	PhysicalFileResult
	Action results form previous version of Asp.Net MVC that are either reamed or deleted
	Building and returning a custom result
	Best practices regarding the use of action results
	Summary

